APPENDIX F

DESIGN EXAMPLES—NONBUILDING STRUCTURES

F-1. Introduction. The design examples in this appendix are to illustrate principles, factors, and concepts involved in seismic design. These are not mandatory; and other equivalent methods, materials, or details complying with this manual and applicable agency guide specifications may be used.

F-2. Design Examples—

Fig. No.	Description of Design Examples
F-1	Elevated Tank (Braced Frame).
	Four-legged, diagonal braced tower.
F-2	Vertical Tank (On Ground).
	Vertical water tank supported directly by the ground.
F-3	Horizontal Tank (On Ground).
	Typical horizontal tank supported on saddles.
F-4	Pole-Mounted Transformer.
	Equipment supported by a non-building pole structure.
F-5	Tower-Mounted Equipment.
	Tower-supported equipment is investigated for lateral seismic loads. The tower period
	is computed.

DESIGN EXAMPLE: F-1

ELEVATED TANK (BRACED FRAME):

Description of Structure. A 90,000 gallon steel water tank on top of a 114.5 foot high steel braced frame.

Lateral Loads.

```
 V = (ZIC/R_W) W  (SEAOC EQ 1-1) where Z = 0.3 (Zone 3) I = 1.0 R_W = 3 (SEAOC TABLE 1-1) S = 1.5 (Soil type 53, SEAOC TABLE 1-B)  T = 1.37 \text{ (See Sheet 2)}  C = 1.25 \text{ S/T}^2/3 = 1.52  V = (0.3 \times 1.0 \times 1.52/3) W = 0.15 W MINIMUM C/R_W = 0.50, V = 0.15W (SEAOC 1I 5a)
```

Figure F-1. Elevated tank (braced frame).

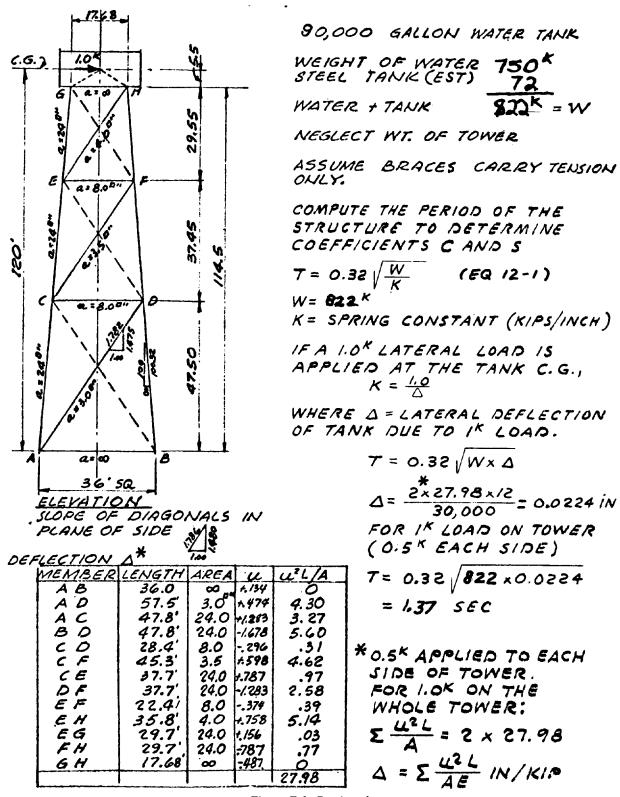


Figure F-1. Continued.

V = 0.15 W (SHEET 10F 3)

 $= 0.75 \times 822 = 123.3 \text{ K/PS.}$

STRE	55 IN	MEMBERS	FOR LO	AD APP	LIER PA	RALLEL	10
MAJC	OR AX	(15. V=123.3"	DIESCT LOAD	ECCEN. LOAD	TOTAL	UNIT	-
ME	MBER	1		STRESS	SIRESS	STRESS	
	AB	t.134 . 123.3"	+ 16.5K	+ 0.8ª	+ 17.3K		
	AO	Y. 474	+ 58.5	+ 2.9	t 61.4	20.5 K/0°	
	AC	11.283	+ 158.2	0.	t158.2	6.6	
	BO	1.678	-207	0.	-207	8.63	
	_	296	- 345	- 1.8	- 38. 3	4.79	
	CF	t.598	+ 73.7	≠ 3.7	+ 77.4	22./	
	CE	1.787	+ 97.1	0.	+ 97.1	4.05	
	OF.	7.283	-/58.2	0.	-158.2	6.6	
	EF	374	- 46Z	- 2.3	- 48.5	6.06	
		+.75 8	+ 93.4	+ 4.7	+ 98.1	24.5	
		4.156	+ 19.8	0 .	+ 19.2	0.80	
	FH	787	- 97.1	0.	-97./	4.05	
	SH .	487	- 60.1	- 3.0	-63./		

STRESSES ONE TO 5% ECCENTRICITY M. = .05 x 36 x 123.3 = 222

SHEAR ON EA. OF 4 SIDES = \$22 = 3.08 "

STRESS IN WEB MEMBERS = 3.08 x (DIRECT LOAD STRESS)
STRESS IN COLUMNS = 0 (F3.1/2) x (DIRECT LOAD STRESS)

FOR LOAD APPLIED AT 45° TO MAJOR AXIS OF TOWER

$$P = \frac{123.3 \times 120}{1.414 \times 36} \times 1.007 = \pm 293 \text{ KIPS}$$

$$(NOTE: FORCE /N BD \times \sqrt{2} = 207 \times 1.414 = 293)$$

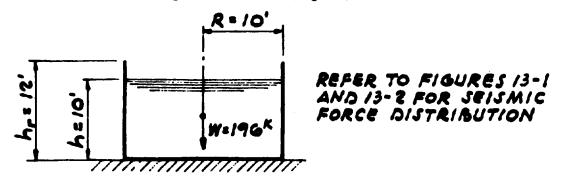
$$GRAVITY FORCE ON COLUMNS = 822^{K} \div 4 = -206 \text{ KIPS}$$

COLUMN DESIGN: - 293 - 206 = -499 KIPS (COMPR.)

DESIGN ANCHOR BOLTS AND FOUNDATION FOR 118 KIPS UPLIFT FORCE

* REPER TO . SEAOC IHIB

Figure F-1. Continued.


DESIGN EXAMPLE: F-2

VERTICAL TANK (ON GROUND)

Description of Structure. A cylindrical water tank on grade with a radius of 10 feet (R=10), a height of 12 feet $(h_T=12)$, and a water depth of 10 feet (h=10). The tank is located in Seismic Zone 4 and I=1.0. The weight of the tank is 20 kips.

Required. The period of the sloshing water, the maximum vertical displacement of the water (d max), and the design seismic forces. Refer to Chapter 13, paragraph 13-4.

Figure F-2. Vertical tank (on ground).

GENERAL

Z = 0.4, SEISMIC ZONE 4

I = 1.0

Rw = 4 (SEAOC TABLE 1-I)

C = 1.25 5/73/3 \(\text{2.75} \) SEAOC EQ 1.2

S = 1.5 (NOT KNOWN, SEAOC TABLE 1-B)

K = h/R = 10.0/10.0 = 1.0

W (WATER) = # (10) (10) (0.0624) = 19 G K

W, (ROOF) = 0 (NO ROOF)

Ww(TANK WALLS) = 20 K

Figure F-2. Continued.

RIGID BODY FORCES [PARA.13-4a(1)]

$$V_{RB} = Z I C / R_W (W_P + W_W + W_Z)$$
 (13-1)

 $C = 2.75$
 $Z I C / R_W = 0.4 \times 1.0 \times 2.75 / 4 = 0.28$
 $W_Z = 0.54 W (FOR & = 1.0)$ (TABLE 13-1)
 $= 0.54 \times 19 G = 10 G^K$
 $V_{RB} = 0.28 (0 + 20 + 10 G) = 35.3^K$
 $h_Z = 0.38 h$ (TABLE 13-2)
 $= 0.38 \times 10 = 3.8 FT$.

 $h_Z^I = 0.80 h$ (TABLE 13-2)
 $= 0.80 \times 10 = 8.0 FT$
 $M_{RB} (TANK SHELL) = Z I C / R_W [W_P h_P + W_W h_W + W_Z h_Z] (13-2)$
 $= 0.28 [0 + 20(\frac{12}{2}) + 10G(3.8)]$
 $= \frac{14 G^{K-FT}}{27 / K-FT}$
 $M_{RB} (BELOW BASE) = 0.28 [0 + 20(\frac{12}{2}) + 10G(8.0)]$
 $= \frac{27 / K-FT}{2}$

SLOSHING WATER PORCE [PARA. 13-4, (2)]

PERIOD, T = KTVh (13 - 4)KT = 0.84 (TABLE 13-3) T = 0.84 VIO = 2.66 SEC. Vsc = (ZIC/RW) WC (/3-3)C = 1.25 5/73 = 0.97 S = 1.5 (MAXIMUM VALUE) ZSC/Rw = 0.4 x1 x 0.97 x 1/4 = 0.097 Wc = 0.43W (TABLE 13-1) = 0.43 x 196 = 84.3K VSL = 0.097 x 84.3 = 8.2 K he = 0.60h = 0.60 x 10 = 6.0 FT. (TABLE 13-2) he = 0.79 h = 0.79 x 10 = 7.9 FT. My (TANK SHELL) = (ZIC/Rw) We he (13.5)= 0.097x 84.3x 6.0 = 49.1 K-FT MSL (BELOW BASE) = 0.097 x 84.3 x 7.9 = 64.6 K-FT

 $Figure\ F-2.\ Continued.$

HEIGHT OF SLOSHING WATER

$$d_{MAX} = \left[\frac{0.75 (ZSC/Rw)}{I - k_d (ZSC/Rw)} \right] R \qquad (/3-6)$$

$$= \left[\frac{0.75 (0.097)}{I - (I.75)(0.097)} \right] 10.0 \qquad (k_d FROM TABLE/3-4)$$

$$= 0.88 \text{ FT.} \quad (LESS THAN h_r - h = 2 FT, 0K)$$

TOTAL DESIGN FORCES [PARA./3-4=(5)]

$$V_{TOTAL} = \sqrt{V_{RB}^2 + V_{SL}^2}$$
 (/3-8)

 $= \sqrt{(35.3)^2 + (8.2)^2} = 36.2^K$
 $M_{TOTAL} = \sqrt{M_{RB}^2 + M_{SL}^2}$ (/3-9)

FOR TANK SHELL = $\sqrt{14G^2 + 49.7} = 154^{K-FT}$

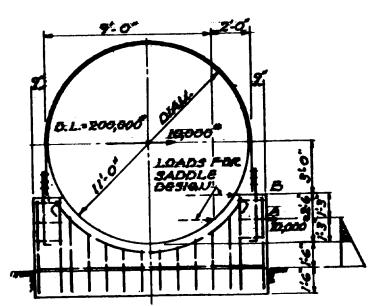
FOR BELOW BASE = $\sqrt{27/2 + 64.6^2} = 279^{K-FT}$

TM 5-809-10/NAVFAC P-355/AFM 88-3, Chap 13

DESIGN EXAMPLE: F-3

HORIZONTAL TANK (ON GROUND):

Description of Structure. A 20,000 gallon steel tank in concrete saddles on a concrete slab on grade. Seismic Zone 2A, I = 1.0, S = 1.5 For this rigid structure $T \le 0.3$ sec.


Lateral Loads:

$$V = \frac{ZIC}{R_W} W$$
where Z = 0.15, I = 1.0, $R_W = 4$, S = 1.5
$$C = 2.75$$

$$W = \text{Weight of Tank plus contents.}$$

$$V = \frac{0.15(1.0)(2.75)}{4} W$$

$$= 0.10 W > 0.075 W \text{ (OK)}$$
[MINIMUM $C/R_W = 0.5$; $V = 0.15 \times 0.5W = 0.075W \text{ (SEAOC 1T5a)}]$

20.000 GALLON TANK 11'-0" DIAM. x 28'-0" LONG **WEIGHT TANK PLUS** CONTENTS 200,000 LBS. SEISMIC LATERAL FORCE

V = 0.10 W

 $= 0.10 \times 200,000$

= 20.000 LB.

OR 10,000 LB. EA. SADDLE

STRAP DESIGN:

FOR THE PURPOSE OF THIS EXAMPLE ASSUME THE REACTION IS AT LEVEL "A" AND NECLECT WEIGHT OF TANK AND CONTENTS. M = 10000 x 4.25 = 42,500 #

STRESS : 12,500/9.0 = 4,720 # IN STRAP.

SADDLE DESIGN FOR REWFORCEMENT ASSUME THE LOAD ON THE PIER TO BE APPLIED AT LEYEL "B" MOMENT WITH LOAD APPLIED AT LEYEL B

M = 10,000 x 2.5 = 25,000 " DESIGN REINF. TO RESIST THIS BENDING, MOMENT IN ACCORDANCE WITH STAN-DARD PROCEDURE.

BASE DESIGN

TOTAL O.T.M. = 20,000 x 8.5 = 170,000 **

BASE 12'-6" x 24'-0" A = 12.5 x 24 = 3000' 36CTION MODULUS 3 = 24x(12.5)2 = 625 *ea. saddle = 5880* *x 2 = 11,760 BASE WEIGHT = 225 x 300 = 67,500*

+200,000 279,260 TOTAL WEIGHT

 $\frac{P}{A} = \frac{279,260}{300} = 930.87 \frac{\mathcal{M}}{3} = \frac{170,000}{625} = 272$

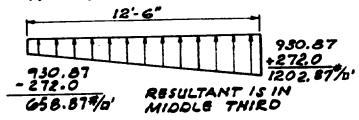
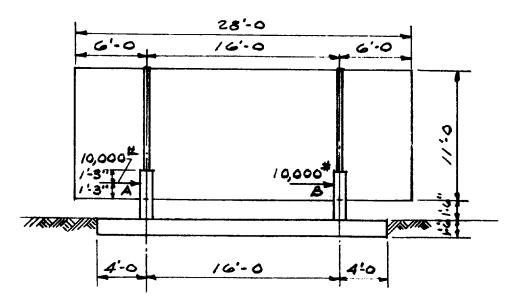
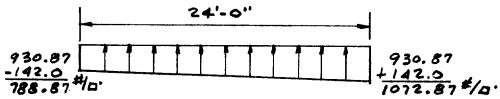



Figure F-3. Continued.

OVERTURNING ON SUPPORT IS NEGLIGIBLE AND IS NOT INCLUDED IN THIS CALCULATION

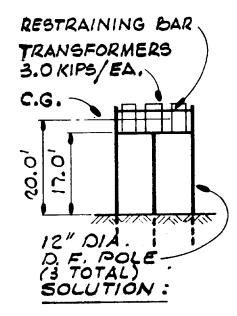
SADDLE DESIGN

MACMB ABOUT BASE OF TANK = 10,000 x 1.25 = 12,500 14


ABOUT FOOTING = 10,000 x 2.75 = 27,500 14

DESIGN REINF. TO RESIST THESE BENDING MOMENTS IN
ACCORDANCE WITH STANDARD PROCEDURE

BASE DESIGN


DESIGN REINF. IN FOOTING IN ACCORDANCE WITH STANDARD PROCEDURE TO RESIST SADDLE M = 27, 500 H TOTAL 0.T.M. = 20,000 X8.5 = 170,000 H

$$\frac{P}{A}$$
 = 930.87 (FROM SHEET 20F3) $\frac{M}{S}$ = $\frac{170,000}{1200}$ = 142

RESULTANT IS IN MIDDLE THIRD DESIGN FOOTING FOR SOIL PRESSURES SHOWN IN ACCORD-ANCE WITH STANDARD PROCEDURE.

Figure F-3. Continued.

GIVEN:

WT. TRANSFORMERS = 3.0 KIPS / EA.
WT. POLES == 35 LB/FT./POLE
E (POLES) == 1.Gx10GLB/IN.2
SOIL PROPERTIES ARE UNKNOWN
ASSUME EACH POLE ACTS AS A
20' LONG CANTILEVER
SEISMIC ZONE 3 OCCUPANCY CATEGORY 1
(ESSENTIAL FACILITY).

REQUIRED :

FIND THE SEISMIC FORCE COEFFICIENT FOR THE WEAK AXIS OF THE POLE FRAME. (I.E., NORMAL TO THE PAPER.)

CLASSIFY AS A NON-BUILDING STRUCTURE.

$$T = 0.32 \sqrt{\frac{W}{k}}$$
 (EQ12-1)
 $W = 3000 + \frac{35 \times 20}{2} = 3,350 LB/POLE$

CALCULATION OF K:

Io (ONE POLE) = .785R⁴ = .785(G)⁴=1017 IN.⁴

$$\Delta = \frac{PL^3}{3EI}, \text{ OR } K = \frac{3EI}{L^3} = \frac{3(I.G \times IO^G(1017))}{(20 \times I^2)^3} = 353 LB5/IN.$$

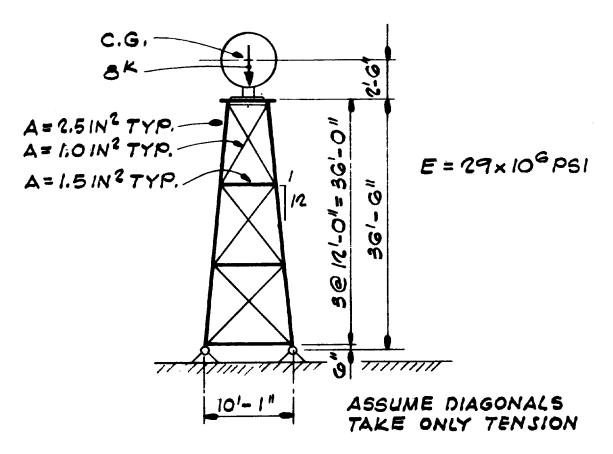
...
$$T = 0.32 \sqrt{\frac{3350}{353}} = 0.99 SEC.$$

 $V = (ZIC/R_w)W$ (SEAOC EQ 1-1)

Z = 0.30 (ZONE3)

I = 1.25 (ESSENTIAL FACILITY)

R = 3 (INVERTED PENDULUM) SEAOC TABLE 1-I

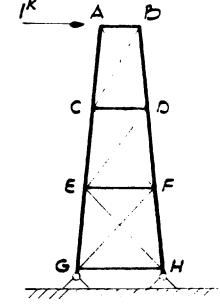

C = 1.88 (TABLE 4-1 FOR T = 1.0 SEC)

 $C/R_W = 1.88/3 = 0.63 > 0.50$ (SEAOC 115a) $V = (0.30 \times 1.25 \times 1.88/3) W = 0.236W$

Figure F-4. Pole-mounted transformer.

GIVEN :

MISSILE TRACKING DEVICE SITUATED
ON TRUSS TOWER: SEISMIC ZONE 2B
ESSENTIAL FACILITY
SITE TYPE S3


REQUIRED :

FIND THE LATERAL SEISMIC FORCE TO BE APPLIED AT THE CENTER OF GRAVITY OF THE TRACKING DEVICE. CLASSIFY AS RIGID EQUIPMENT ON A STRUCTURE OTHER THAN A BUILDING.

Figure F-5. Tower-mounted equipment.

50	L	U	T	į	0	N	•

MEM- BER	P FORCE (KIPS)	(IN.)	A (1N, ²)	PZL		
AAABBCCCBBEEFFG	1.00 -2.07 -2.07 -2.00 -2.00 -3.00 -3.00 -3.30 -3.30	4455474664948842	0 5 0 0 5 5 5 0 0 5 5 5 0 0 5 5	0004613049690147		

NOTE: PT. H IS ASSUMED TO TAKE NO BASE SHEAR AS MEMBER EH CARRIES NO LOAD

$$I^{K} \cdot \frac{\Delta}{2} = \sum \frac{\rho^{2}L}{2\Delta E} \; ; \; \sum \frac{\rho^{2}L}{\Delta} = 3401.5 \; K^{2}/IN.$$

$$\sum \frac{\rho^{2}L}{AE} = 1.17 \times 10^{-1} = 0.117 \; INCHES | KIP$$

$$\left(\frac{1}{\Delta}\right) = k \quad k = 3.55 \; KIPS/IN. \; PER \; SIDE$$

$$T = 0.32 \sqrt{\frac{W}{k}} = 0.32 \; \sqrt{\frac{3.0}{2(3.55)}} = 0.22 \; SEC \; (EQ. 12.1)$$

Z = 0.20 (ZONE 2B), I = 1.25 (ESSENTIAL FACILITY) $R_W = 3.0$ (INVERTED PENDULUM), C = 2.75 (TABLE 4-1) $V = (ZIC/R_W)W = (0.20 \times 1.25 \times 2.75/3)W = 0.23 \times 8 = 1.84 \times 1.85$

NOTE: WEIGHT OF TOWER WAS NEGLECTED.

Figure F-5. Continued.